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ANALYSIS OF FRACTURE PROBABILITIES IN NON-UNIFORMLY

STRESSED BRITTLE MATERIALS

by

N. A. Weil and I. M. Daniel

ABS CT

This paper describes the results of theoretical studies on the effect

of non-uniform stress fields limited to those encountered in prismatic

beams under bending, upon the fracture of brittle materials. Derivations

were carried out to determine the risk of rupture of bending specimens

subjected to a symmetrical four-point load of arbitrary spacingthe

symmetric three-point loading and pure bending forming limiting cases of

this more general loading. The analysis was based on materials obeying

the Weibull distribution function with assumptions for either volumetric

or surface flaw dispersion conditions. Comparisons are presented between

the predicted strengths of bending and tensile specimens.-- -\ ..

An analytical method for the determination of the three Weibull

parameters from a pure bending test is proposed. This method, based

on the "best fit" of a theoretical curve to the experimental data, was

successfully applied to experimental results on Columbia Resin, a brittle

amorphous polymer.



ANALYSIS OF FRACTURE PROBABILITIES IN NON-UNIFORMLY

STRESSED BRITTLE MATERIALS

by

N. A. Weil and I. M. Daniel

I. INTRODUCTION

In practical applications ceramic parts are almost invariably

subjected to loading conditions resulting in non-uniform internal stresses.

In fact, because of the purely elastic nature of these substances, it is

difficult to impose uniform stresses upon them even under the most care-

fully controlled conditions, so that most laboratory tests also employ one

or another form of non-uniform stress condition.

In recent years an increased awareness has evolved that the fracture

strength of ceramic substances can be satisfactorily represented only as

a statistical quantity, and suitable approaches were. developed to extend

this statistical treatment to bodies subjected to non-uniform stresses.

However, all of these theories assume that the cumulative fracture probability

for the entire body is determined by summing the probability of fracture of

-its infinitesimal component elements, each subjected to a uniform state of

stress. The existence of a stress gradient, and the shear stresses that

inevitably accompany its presence, are not assumed to contribute to

failure by themselves.

To date there had been no attempt made to confirm the validity of this

assumption. An investigation was, therefore, undertaken to examine the

influence of the non-uniformity of stress upon the probability of fracture, and

to determine whether the existence of a stress gradient, per se, had a

demonstrable effect upon the fracture strength. This investigation was

carried out in two complementary parts: ananalytical and an experimental

program.

This paper presents the results of theoretical studies concerning

the influence of non-uniform stress fields upon the fracture characteristics

of brittle materials. The complementary experimental program was com-

pleted since this paper was submitted and results were presented recently( 1)*.

The most widely accepted statistical theory of fracture is based on

Numbers in parentheses refer to References.
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the Weibull distribution function ( Z, 3). The theory uses two basic criteria

of fracture, size and normal stress, and postulates that failure in an

isotropic, homogeneous material is fully described by three material

parameters: the "zero strength", the "flaw density exponent" and a scale

parameter. Within the validity of these assumptions, the theory is capable

of describing failure for any type of stress distribution, uniform or non-

uniform, uniaxial or polyaxial. For these reasons, the Weibull theory was

selected as the basis of the analytical work described here.

Analysis of fracture probabilities in the presence of stress gradient

have been conducted by Weibull himself and more recently by V. Weiss 4 ' 5)

Although non-linear gradients were investigated the simplifying assumption

of a zero value for the "zero strength" was made.

The non-uniform stress-field chosen for the present analysis was that.

of the simple beam subjected to four-point loading. This stress field is

one of the simplest non-uniform stress fields that can be studied; in fact,

for pure bending a single parameter, the stress gradient, is sufficient to

describe the stress distribution. Also, this specimen shape and loading

condition lends itself excellently to carefully controlled tests, and was used

throughout the experimental work on this program.

Basic to any experimental work studying the effect of a given parameter

is the need for obtaining a completely reliable fundamental statistical distri-

bution of strengths for the material in question. Customarily, such is done

either by a trial-and-error graphical method originally suggested by Weibull,

or by analytical approaches devised by others ( 6 ' 7, 8, 9). However, the

graphical method cannot be freed from errors attributable to subjective

judgments, and the analytical treatments are mostly suitable for a large

number of purely tensile specimens.

Therefore, following the theoretical derivations for the effect of

non-uniform stress fields, an analytical method is presented here for

defining the "best fit" of a theoretical Weibull curve to a set of experi-

mentally obtained data. The appropriate parameters are obtained by a

minimization process of the sum of the mean squares. The procedure so

developed is then demonstrated by applying it to a series of bending tests

conducted on Columbia Resin (CR-39) specimens.

2-



II. WEIBULL THEORY

The Weibull theory uses two basic criteria of failure, size and

normal tensile stress. For a uniaxial stress field in a homogeneous

isotropic material, governed by volumetric flaw distribution, the probability

of fracture at a given stress or is given by

I - [-p )T dV] = 1 }/ (f U

0 (i)G-

where

B =f a u dV (2)
V 0"

is the "risk of rupture", and

Gu = zero probability strength (location parameter)

m = flaw density exponent (shape parameter)

a' = scale parameter

The last three parameters are associated with the material and are

independent of size.

The mean failure stress is given by

= a' + 100 e-B do" (3)

and the variance by

2 e B (oZ)+ - 2  (4)
a = e3u m
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From Eq. 1 it is seen that the theory does not make any special

allowance for the non-uniformity of stress distribution. Each infinitesimal

element-of a specimen is considered to be under uniform tensile stress,

and the risk of rupture for the whole specimen is obtained by integrating the

risk of rupture of each infinitesimal element over the volume of the speci-

ment. The stress gradient does not enter as an independent parameter, and

all the non-uniformity effects seem to be accounted for by the risk of

rupture. The question of whether the stress gradient has an independent

effect on the fracture stress is equivalent to the question of whether the

Weibull theory is sufficient to predict failure for non-uniform stress fields.

In a material governed by surface flaw distribution the risk

of rupture is given by

B =f u, dA (5)

In order to establish the dependence of the risk of rupture on

the dimensions of a specimen and the type of loading, the risk of rupture

was calculatf A for a general case of a prismatic beam under four-point

loading. Derivations were made for both cases of volumetric and surface

flaw distribution.

III. RISK OF RUPTURE

A. Material Governed by Volumetric Flaw Distribution

The distribution of tensile stresses in the beam shown in

Fig. 1 is

h yxfor 0 LxT and (1- ) L-xgL
Zb L (6)

a h y for -sx(l - -)L

-4-



0,z
C00
b. 0

4- *

0

-JJ

4



The risk of rupture is then composed of two parts

B b= + Bb" (7)

where Bb' corresponds to the central portion of the specimen subjected

to uniform bending and Bb" refers to the outer portions. It can be shown

that

Bb' = 2(m + 1 -1) o (8)

and

B-" ( I- (T ) (T b -TU M 2 +b 2 (m+ l) T - 0 0b°

+ V + 1k (me+1) qrom

where

m = (m] +a, with En] the largest integer less than or

equal to m,

I f h/2 1 y 1-F )cdy (10)

Yu

h ruy u =
r b

T rb



r=O m+1-r -(11)

Using Eq. 7 we obtain

V u b u2

V M + I+m (-a .cx (1)
k (m+l) b Oo

If m is an integer, i.e. if m =i] , then = 0 and

Eq. 12 reduces to

Bb -2(+ I )( )[• - + Z]+

+ kmm+l Y h (13)k (re+1) a-b Tro Y

Specific forms of this formula can be obtained by assigning values

to the parameter k.

a. Pure Bending (k = o)

V 1 u O 714)• b =r 2 ml b To
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b. Quadrant-Point Loading (k - 4)

Bb '1 -Tu - Tu+b 4(m+ 1.) b T 0L
(15'

+ V )i+1 h

4(m+1) 0[b ' 0u

c. Third-Point Loading (k = 3)

Bb 6(r+) (T u T 0b ao 1+

(16)

+ V . -- m+l n h

3(re+1) (rb Cr m U) TU

d. Three-Point Loading (Center-Point Loading; k = 2)

B v Olu Er Tu +

Bb =Z(m+) 1 b ) 0

+ V "j0 1 u

2(m+I) m bo u (17)

When cr = 0, both Eqs. 12 and 13 reduce to

SB - _O'b~ 
k (m1) - 2m

b - Z(M+) 0 0 k(m+1) (18)
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Again, we list below some typical casecs of interest for specific

values of k.

a. Pure Bending (k = Q)

Bv b (19)
Bb = 2(mil) 19)

b. Quadrant-Point Loading (k = 4)
I m

B = (+e ) b M+2 (20)
b 4(m+ 1) 0 I

c. Third-Point Loading (k = 3)

V V'b m  m+3b 6( m+ (21,

d. Three-Point Loading (Center-Point Loading; k =)

m°-

Bb = .. (m-Ir MT

The variation of the risk of rupture with the spacing of concentra-

ted loads on thb beFam is described by the factor

K = k(m-l) - 2mS= --- -m+Ij). . (23)

in Eq. 18. The relationship among the values of Bb given in Eqs. 19

through 22 is illustrated in Fig. 2 by plotting the factor K against the

parameter m.
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B. Material Governed by Surface Flaw Distribution

For the stress distribution defined by Eq. 6 we have

L Tb - mu 1Bb

( b; u .- Lb + 2h o (24)

0 k(m+ 1) a-bom 0

If m is an integer, Eq. 23 reduces to

B L r- T -u Tb-) u l Li - 2 h+ - + 2b +Bb = 1-T b tro0

(25)

+ 2 h L m (y-'i+ n+ - ) (% u m Lb
k(m+ 1) Tbo • 0

For the specific cases mentioned before we have

a. Pure Bending (k =c-O)

(Tb - (ru Ih u
B b = L c7°  _ 1 'b 1+ b (26)

b. Quadrant-Point Loading (k= 4)

L hr br
Bb = m+ (1 rb °'(ob- [4 "" " " + '~

+ 2 h L - m+l £1 L +n h (b u Lb (27)
4(m+ l) 0rboo u



c. Third-Point Loading (k = 3)

B L 1 U b 'u ) h + 7h + ZbI

(28)b " °'u h o' L +' -+

+ I'0-b u ) Lb + 2hL m u) +l ) h
o 3(m+ 1) ab0o

d. Three-Point Loading (Center-Point Loading; k - 2)

L a ab = u

B I ( h b +Bb = b 0o

(29)

+ 2 h L ( um+1 gn h

2(m+1 ) a bom YU

When r = 0 both Eqs. 24 and 25 reduce to

Bb Lt b -h + b k(m+l)-Zm (30)

For the specific values of k considered above Eq. 30 yields:

a. Pure Bending (k = 00)

Bb : L j( )( h +b) (31)

b. Quadrant-Point Loading (k = 4)

B = a'ro  (m h + m+ (32)
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c. Third-Point Loading (k = 3)

( (b h m+ 3Bb L 0 + b 31m+7) (33)

d. Three-Point Loading (Center-Point Loading: k = 2)

1 mb Ih + _1Bb L b - + b ---T' (34)

Equation 30 contains the same loading factor K as Eq. 18.

In the case of surface-distributed flaws the loading factor can be redefined

and extended to include the effect of width to depth ratio of the beam. Thus,

Eq. 30 can be rewritten as

Bb A ' D

where

A = the surface area of the beam and

I + k(m+l1) - 2m

D = h + k(m + 1 ) (36)

with
A b

The relationship among the values Bb given in Eqs. 31

through 34 is illustrated in Figs. 3 to 7 by plotting the combined loading-

shape factor D versus parameter m.

IV. RELATIONSHIP BETWEEN BENDING AND TENSILE STRENGTHS

For a material governed by volumetric flaw distribution the

risk of rupture in a tensile specimen is

Olt  - ru

Bt = Vt ( -tu (37)

- 13-
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where Vt is the volume of the specimen, whereas for a prismatic speci-

ment under pure bending the risk .of rupture was given by Eq. 14.

In order to compare mean failure stresses the risks of rupture

given above must be substituted in Eq. 3 in order to compute 0 m for the

two cases. However, this is quite involved for the case of pure bending,

since for this case Eq. 3 cannot be solved in closed form expression.

Instead, comparison of median failure stresses, or any stresses of a given

probability of fracture for that matter, is easily carried out by equating

instead the risks of rupture corresponding to the different loading

conditions

V Ot - T = VbGU Ob-G
a' 0 = r l T b 0

from which

Tz im+l) V]m 1-"l (38)

For a- u = 0 this expression reduces to

t 1/ V(19)

a'b  Z(m+ I) (39)

In this case the relationship between median stresses is the same as that

between mean stresses, as can be shown easily. In the case of a classical

material (m =co) Eq. 38 yields

rt a b = u

- 19 -



For a material governed by surface flaw distribution the risk

of rupture in a tensile specimen of rectangular cross section (b x h) is

Bt = 2 L (b + h) ( u (40)

as compared to Eq. 26 which gives the risk of rupture under conditions

of pure bending.

Equating risks of rupture we obtain the following relation

1 1/m

b u + T1 41)

b 2(m+1) (l + b -

which, for u = 0, reduces to

b 1i] (42)

V. ANALYTICAL DETERMINATION OF MATERIAL PARAMETERS

Experimental determinations of material parameters generally

call for testing a number of simple calibration specimens and passing a

curve through the data points presented in a plot showing the probability

of fracture against the failure stress. Given a theory, such as the Weibull

theory, an expression for the probability of fracture can be obtained which

is a function of specimen geometry and material parameters to achievre a

"best fit". The objective is, then, to find those values of the material

parameters which make the theoretical curve fit best the experimental

points. A suitable criterion for this purpose is the minimization of the

sum of the mean square differences. This method, developed below,

is applicable to materials governed either by volumetric or surface flaw

distribution.

- 20 -



A. Material Governed by Volumetric Flaw Distribution

The probability of fracture at the stress cr is

Sn eBn(43)

Combining this with the expression for the risk of rupture

given in Eq. 14, there results

y In.jn 1n B
n nn

i n (m+1) + (m+l) (n (a-'u)X- n or -m.n 44)n U n 0

The corresponding (estimated) value of this function of probability of fracture

obtained experimentally is

Yhernn + n1 (45)

where,

N is total number of specimens tested, and

n is the serial number of specimen (when specimens are ordered

according to ascending values of the fracture stress (rn).

The least squares method requires that for a best fit

n = minimum (46)

n= 1

-21-



The necessary conditions for the existence uf this minimum are

N =0
n n nYn- Yn)  -b 0

n=1 u

(Y-Yn (47)
N ( Y - n - 0

I ' n -Yn '  rm
n=1

which reduce to

[;n in N+1.n in B j -- 0
n= 1n u

N Nr
7 [)n n N+l - in B (48)

n==

ri Y N+ 1 - in B n u

n= 1 -

B. Material Governed by Surface Flaw Distroiblution

Using in this case the expression for the risk of rupture given

by Eq. 26, the theoretical relation between the probabil-.Ity of fracture, Sn$
and the corresponding failure stress, a-n' becomes

Yn = n -- 1 9 Yn B n=
n

n" L + mRn(rn ru) m9n ao- n[ m O-(l- b] (49)
n , -' -, l Fn 22
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Application of the least squares method again leads to Eqs. 47,

which in the present case reduce to

N

in 1. N+ -1 n B] + h 10N - T - n] W - T0 "a =

n= 1 h 1 - + b](+1) n

N+ - n Bn]
n= 1

)nN+l- - n Bn [n~~4)(+)
n= i[h~+ 1 u)+ b] (+1

n ( 0
u = 0 (50)

Equations 48 and 50, depending on the type of material, are

solved for the three material parameters au' 0o , and m. They are too

involved for a conventional solution to be attempted and a computer solution

is required.

VI. EXPERIMENTAL WORK

The material used for the experimental evaluation of the method

described above was Columbia Resin (CR-39), an amorphous, brittle polymer.

Thirty-six CR- 39 specimens 0. 4 in. x 0. 4 in. x 4 in. were cut from a 1/2 in.

thick sheet with all surfaces of each specimen having a uniformly machined

finish. These specimens were tested under four-point loading with a gage

length of 2 in. subjected to pure bending and a distance of 3/4 in. between

-23 -



loads and supports. The existence of pure bending between the two middle

loads is illustrated by the isochromatic fringe pattern of Fig. 8, obtained

on one such specimen under four-point loading. The specimens were tested

in an Instron model TT testing machine.with a crosshead speed of 0. 5 in. /min.

A load versus crosshead deflection record was obtained in each case, and

deviation from linearity was noted. Although this fact does not preclude

localized non-linear deformation, the data were analyzed on the basis of

linear elastic behavior to failure. The following results were obtained:

Mean failure stress : = 6, 460 psi
m

Standard deviation a = 1, 060 psi

Variance : a. = 1, 123, 600 (psi)2

Coefficient of variation : v = 16.41%

Highest failure stresz : *high = 8, 780 psi

Lowest failure stress : Glow = 3, 670 psi

A volumetric flaw distribution was assumed and Eqs. 48 were

solved by the computer for the desired material parameters. The

following values were obtained:

Tu = 940 psi

O= 3030 psi

m= 5.79

The theoretical cumulative distribution curve of Eq. 43 for the values of the

parameters found above was plotted in Fig. 9 along with the experimental

points based on the relation

nSn --R'+'7

4 is seen that the "fit" is very satisfactory. It should be remarked, however,

that the nature of the fitting criterion used (minimization of least squares)

does not necessarily guarantee a best fit in other respects; e. g. the

derivative of the cumulative distribution function which provides the

probability density function, may not show an equally satisfactory correlation.

- 24-
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VII. DISCUSSION

Equation 12 shows that, for materials whose fracture is governed

by a volumetric flaw distribution, the only specimen dimension entering the

expression for the risk of rupture is the total volume V. For a fixed value

of the parameter k variations of length, width or depth of specimen which

leave its volume unaffected will not affect the risk of rupture and, therefore,

the latter is independent of (transversal) stress gradient.

The dependence of the risk of rupture on specimen dimensions

is more complicated for the case of a material governed by a surface flaw

distribution. For a given material a-of a"u and m are constants. If one

is interested solely in the effect of depth and width upon the risk of rupture,

h and b should be regarded as being the only variables, while the length

L and extreme fiber stress o-b should be kept constant. Then, the risk

of rupture for a pure bending specimen, as given by Eq. 26, remains

constant provided b and L satisfy the relationship

h ( a-\
h 1 b + b = constant

2a-b

Substituting now h w b, where g is the stress gradient,9
there results

gl+l) ( l u + b = constant, or

g

where

C2cI - ~ b%-%)

C constant

From Eq. 51 it follows that it is possible to vary the stress gradient without

27 -



affecting the risk of rupture, provided the width b varies in such a manner

that Eq. 51 is satisfied, with appropriate reference to the strength of the

mateiial, b"

For purposes of material parameter determination any type of

bending test would be suitable if 0 = . If r u 0 material parameters

can be uniquely determined from a tensile or a pure bending test. This

means that for four-point loading the loads should be as close to the supports

as practicable, yet without incurring the risk of causing shear failures to

develop next to the support points. In general, it is possible to apply the

equations for pure bending to results obtained from tests of beams subjected

to symmetric four-point loading if only fractures occurring in the portion

of the beam under constant bending moment are regarded as being valid.

Tests resulting in fracture outside the gage length of interest(between

supports and loading points) would be discarded from the statistical analysis.

The conventional trial and error method for the determination of

parameters is suitable for tensile, torsion and pure bending specimens in

the case of volume-distributed flaws and only for tensile and torsion

specimens in the case of surface distributed flaws. The method as it is

usually applied is not entirely free of subjectivity. The analytical method

described here is more general and is especially advantageous in the case

of surface-distributed flaws. Its successful application was clearly

demonstrated in the case of CR-39.

VIII. CONCLUSION

Statistical failure theories developed to date implicitly assume that

the probability of fracture is governed by the tensile normal stresses existing

in an element, and is independent of the intensity of shear stresses existing

in any part of the body. The overall fracture probability of a piece is then

obtained by summing up the individual failure probabilities of infinitesimal

components composing the body, this result remaining independent of the

stress gradient accompanying the internal stress distribution.

- Z8 -



The validity of this hypothesis has never been examined. This

investigation, therefore, was aimed at evolving a carefully conceived

approach for investigating whether the existence of stress gradients had an

independent influence upon the fracture characteristics of brittle ceramic

substances.

This paper presents the results of the theoretical part of the study.

The Weibull theory was adopted as the basis of characterization of the

probabilistic fracture behavior of brittle substances. The symmetrically

loaded beam under four-point bending was selected as the principal subject

of analysis, both because it represents one of the easiest shapes for analysis

and experiments, and because it is one of the geometrical configurations

that an yield conclusive proof regarding the influence of stress gradients

through the simple expedient of changing the proportions but retaining the

area of the rectangular cross section.

A theoretical treatment was developed for the completely general

case of an arbitrary positioning of the two symmetrically disposed loads

on the beam, for the case of a non-integral value of m and a non-vanishing

value of w . Solutions of this nature were obtained for both of the broadu

cases possible with the Weibull theory, that is the case significant flaws

uniformly dispersed either volumetrically or confined to the surface.

Substantial simplifications in the resulting expressions are shown to be

possible first if m is an integer and, second, if ou has a vanishing value.

The special cases of pure bending, quadrant-point, third-point and center-

point loading were derived, the first and the last of these representing the

limiting cases of the general solution.

Because no completely satisfactory treatment of a most reliable

fit of the Weibull probability density curve to experimental data exists

in the current literature (for r u 0 0) an analytical method for obtaining the

"best fit" of a theoretical curve to a set of test points is presented, following

the analytical derivations for the effect of non-uniform stresses. The

process producing this best fit is based upon a minimization of the sum of the

mean squares of theoretical and experimental data, which then yield the

most reliable balues of three parameters descriptive of the Weibull distri-

bution. Lastly, the methodology so developed is illustrated by applying it

- 29 -



to a set of test data obtained with specimens of CR-39, a brittle polymeric

material.

Experimental work in support of the analytical studies presented

here was recently completed and presented in another paper (1).
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